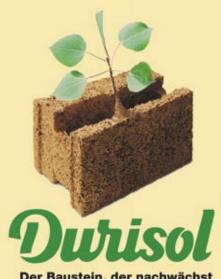


## ... die Durisol-Speicherwand

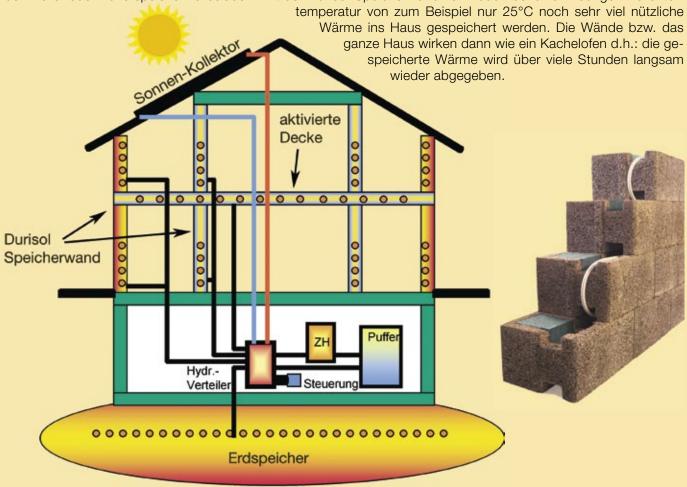
Ökologisch heizen und kühlen, all inclusive


Ein massiver Baustoff speichert bekanntlich die Wärme sehr gut. Durisol-Wände mit ihrem massiven Kern aus Beton eignen sich ganz hervorragend als zusätzlicher Wärmespeicher für Ihre Solaranlage und sind auch mit anderen Heizsystemen kombinierbar. Als **Heiz- und Kühlmedium** in Kombination mit Wärmepumpen bietet die Durisol-Speicherwand einen zusätzlichen Benefit.

Eine Solaranlage bringt nur so lange Energie, solange auch ein Abnehmer vorhanden ist. An vielen Tagen im Jahr scheint die Sonne nicht direkt, der Kollektor wird aber dennoch durch den diffusen Anteil der Sonneneinstrahlung erwärmt. Übliche Solarspeicher (Boiler und Pufferspeicher) sind für diese "trüben Tage" nicht ausgelegt. Dieses generelle Speicherproblem kann durch den Einsatz der Durisol- Speicherwand ganz einfach gelöst werden.

Durch die Möglichkeit auch Wärme aus niedrigen Vorlauftemperaturen (25 bis 40°C) sinnvoll zu speichern, ergibt sich eine wesentliche Erhöhung des Anlagenwirkungsgrades, und somit eine Steigerung des Kosten-Nutzenfaktores Ihrer Solaranlage.

## DURISOL-WERKE GES. M. B. H., NACHFOLGE KOMMANDITGESELLSCHAFT


Zentrale und Werk: Werk: 2481 Achau 8774 Mautern Durisolstraße 1 Durisolstraße 5 TEL 02236 / 71481 TEL 03845 / 2295 FAX 02236 / 71481-4 FAX 03845 / 2170 E-Mail durisol@durisol.at E-Mail mautern@durisol.at



Der Baustein, der nachwächst

## Wie funktioniert die DURISOL-Speicherwand?

Der Betonkern der Durisol-Wand wird mittig mit Rohrleitungen, wie sie auch bei der Fußbodenheizung zum Einsatz kommen, versehen. Diese Leitungen werden direkt, immer dann vom Sonnenkollektor beladen, wenn Boiler oder Pufferspeicher nichts mehr aufnehmen können, bzw. wenn die Temperatur vom Kollektor nicht mehr ausreicht um den Boiler oder Pufferspeicher zu beladen. Mit der Durisol-Speicherwand kann auch bei einer niedrigen Kollektor-



## Berechnungsbeispiel über die Wärmespeicherfähigkeit:

Einfamilienhaus mit 90m2 Innenwand und 120m2 Aussenwandanteil. Die Wände werden direkt vom Kollektor um ca. 5°C erwärmt.

| Gesamt:                                       | 24 m³ Beton | 82KWh |
|-----------------------------------------------|-------------|-------|
| 120 m <sup>2</sup> Aussenwand aus DSs 37,5/12 | 11 m³ Beton | 38KWh |
| 90 m² Innenwände aus DMi 25/18                | 13 m³ Beton | 44KWh |

Diese 24 m3 Beton können also bei einer Temperaturanhebung von nur 5°C die Energiemenge von 82 KWh speichern.  $(24m^3 * 2200 \text{ Kg/m}^3 * 0,31 \text{ W/KgK} * 5° = 82 \text{ KWh})$ 

| CReto              | n_0 31 M/h | /kaK1    | Beton Masse: 2200Kg/m3 |        |         |         |         |         |         |         |
|--------------------|------------|----------|------------------------|--------|---------|---------|---------|---------|---------|---------|
| CBeton=0,31 [Wh/kg |            | <u> </u> | - C                    |        |         | 7.00    | 0.00    | 0.00    | 10.00   |         |
| Delta T            | 1 °C       | 2°C      | 3 °C                   | 4 °C   | 5°C     | 6°C     | 7°C     | 8 °C    | 9 °C    | 10 °C   |
| Beton              |            |          |                        |        |         |         |         |         |         |         |
| 1 m3               | 1 KWh      | 1 KWh    | 2 KWh                  | 3 KWh  | 3 KWh   | 4 KWh   | 5 KWh   | 5 KWh   | 6 KWh   | 7 KWh   |
| 5 m3               | 3 KWh      | 7 KWh    | 10 KWh                 | 14 KWh | 17 KWh  | 20 KWh  | 24 KWh  | 27 KWh  | 31 KWh  | 34 KWh  |
| 10 m3              | 7 KWh      | 14 KWh   | 20 KWh                 | 27 KWh | 34 KWh  | 41 KWh  | 48 KWh  | 55 KWh  | 61 KWh  | 68 KWh  |
| 12 m3              | 8 KWh      | 16 KWh   | 25 KWh                 | 33 KWh | 41 KWh  | 49 KWh  | 57 KWh  | 65 KWh  | 74 KWh  | 82 KWh  |
| 14 m3              | 10 KWh     | 19 KWh   | 29 KWh                 | 38 KWh | 48 KWh  | 57 KWh  | 67 KWh  | 76 KWh  | 86 KWh  | 95 KWh  |
| 16 m3              | 11 KWh     | 22 KWh   | 33 KWh                 | 44 KWh | 55 KWh  | 65 KWh  | 76 KWh  | 87 KWh  | 98 KWh  | 109 KWh |
| 18 m3              | 12 KWh     | 25 KWh   | 37 KWh                 | 49 KWh | 61 KWh  | 74 KWh  | 86 KWh  | 98 KWh  | 110 KWh | 123 KWh |
| 20 m3              | 14 KWh     | 27 KWh   | 41 KWh                 | 55 KWh | 68 KWh  | 82 KWh  | 95 KWh  | 109 KWh | 123 KWh | 136 KWh |
| 22 m3              | 15 KWh     | 30 KWh   | 45 KWh                 | 60 KWh | 75 KWh  | 90 KWh  | 105 KWh | 120 KWh | 135 KWh | 150 KWh |
| 24 m3              | 16 KWh     | 33 KWh   | 49 KWh                 | 65 KWh | 82 KWh  | 98 KWh  | 115 KWh | 131 KWh | 147 KWh | 164 KWh |
| 26 m3              | 18 KWh     | 35 KWh   | 53 KWh                 | 71 KWh | 89 KWh  | 106 KWh | 124 KWh | 142 KWh | 160 KWh | 177 KWh |
| 28 m3              | 19 KWh     | 38 KWh   | 57 KWh                 | 76 KWh | 95 KWh  | 115 KWh | 134 KWh | 153 KWh | 172 KWh | 191 KWh |
| 30 m3              | 20 KWh     | 41 KWh   | 61 KWh                 | 82 KWh | 102 KWh | 123 KWh | 143 KWh | 164 KWh | 184 KWh | 205 KWh |